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The respiratory nitrate reductase (NapAB) fra®modobacter
sphaeroidesis a 108 kDa, periplasmic, heterodimeric enzyme
which belongs to the DMSO reductase farilgnd houses a
molybdenum bis-MGD cofactor, a [4Fe-4S] cluster in close
proximity to the active site, and two surface-exposetype hemes.
Here, we report a study of NapAB by protein film voltammétry
(PFV), and we present the first quantitative interpretation of the
complex redox-state dependence of activity that has also been
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observed with several other related enzyrh@hese results show —500 0

that reduction potentials cannot always be directly used to E (mV vs SHE)

understand the behavior of an enzymatic system under turnoverrigure 1. Catalytic voltammograms obtained for NapAB adsorbed at a
conditions. PGE electrodeT = 20 °C, pH 7, electrode rotation rate = 4 krpm, scan

In PFV, a redox enzyme is adsorbed onto an electrode surface ratev = 20 mV/s. The voltammogram recorded in the absence of enzyme
. ’ - 'is plotted using long dasheEc,: and E, are the inflection points of the
in such a way that electron transfer (ET) is direct and fast. The wave, andS is the substrate (itrate) concentration.
redox state of the enzyme can be tuned by poising the electrode

potential while the activity is measured as a current which is Scheme 1. Catalytic Cycle for the Reduction of Nitrate by NapAB#

proportional to turnover numbétn the simplest casé€ghe catalytic fast Eypme
wave is sigmoidal and centered on the active-site reduction potential. MoVE MoV =——5 MoV
In contrast, Figure 1 shows steady-state voltammograms for nitrate SRR TR A '
reduction by NapAB adsorbed onto a pyrolytic graphite edge (PGE) U ¢ kyS L kvS
electrodé® As the electrode potentialEj is taken to more negative B ' MoV:NO; =Mo'V:NO3
values, the activity first increases to a maximum (the curient NO, R R BT :
L. . . .. ke, V/1V sat |

decreases to a minimum), before it levels off at high driving force.

This is remarkably counterintuitive, as activity decreases when @ Species within dotted boxes remain at equilibrium.

becomes lower than the reduction potential of the"Maocouplé

(—225+ 10 mV), whereas the activity is expected to appear when current equation for Scheme 1 rea@see Supporting Information):

E is sufficiently low that the catalytically competent Mostate —2FATK/i = 1+ ey s T (kdKy (L + &y )/(1 +
accumulates. '
The qualitative interpretation of such waveshdgds usually (ky/Ky eyl (1)

based on a mechanism such as that depicted in Scheme 1, which Provided that binding of substrate partly limits turnover, and is

W|Ilhnova b? L_jsed tz model the (\j/ata.|5|nq|?]gdef sul_)st_rate €an OCCUN 4qter and weaker when the Mo ion is in the V oxidation state than
to the Mo in its oxidation state V or IV, with dissociation constants .o itis fully reducedi, > ky, Ky > Ky), activity is the greatest

Ky = kov/ky andKyy = ko/ky, respectively. The active Sit? has ot moderate driving force, when the reaction proceeds vid:Mo
to be fully reduced and bound to nitrate before the catalytic cycle NOs. The values 0., and Es, (Figure 1) can be derived from
is completed by formation and release of nitrite with a first-order

eq 1:
rate constank.. We noteEy,, andEy,y ¢ = Evyy + (RTF) In- a
(Kv/Ky), the reduction potentials of the My eeuple in the_ Ect= E?//IV,sat+ (RTF) In(1 + kJ/k,9 (2a)
absence of substrate and under saturating conditions, respeétively. o
The MoV transition of the nitrate-free form of the active site is E,w= Eyyv T (RTF) In[(k, + k\9/(k. + k,S] (2b)

not explicitly considered because the corresponding reduction

potential is so highthat Mo/ never accumulates in the electrode that is, activity appears & close toEy, o, While Es, tends to
potential range over which catalysis is observed. The fact that no Eviv at low substrate concentration. From eq 1, it can also be
typical feature revealing sluggish interfacial Eappears in the ~ shown that the limiting and peak currents depend on substrate
voltammograms suggests that redox equilibria are not displacedconcentration according to the Michaetislenten equation with

by turnover. Notingex = exp[(F/RT)(E — E3)], the steady-state ~ Michaelis constant&n = ki/ky andkd/ky, respectively.
The X-intercepts and average slope of the Hanes plots in Figure

tCNRS. 2A gaveKy, = 30 £ 5 uM, k/ky = 7.5uM (thus ky/ky = 4.1),
# CEA/Cadarache. and FAI'k, = 119 + 5 nA. Using these values, all five
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so0 L& of " ' ' : ET between the proximal [4Fe-4S] cluster and the Mo ion in NapAB
~ _a/i =4 ; applies to other multicentered enzymes of the DMSO reductase
<t o-S/4
im ’ _ S=1.5uM i
400k w-s/i,, o =% family.
pea , o
=~ @%ﬁ L alE The model presented here allows the very quantitative interpreta-
? 200 . — —40 £.5uM tion of the voltammetric data in the low, physiological substrate-
A / 6o B f;MM concentration rangeS(< kJ/ky = 7.5 uM =K/4): at a higher
6l : ) - concentration of nitrate, the waveshape deviates from that predicted
-40-20 0 20 40 -400 -200 0 200 ; ; B
§ (M) E (mV vs SHE) by eq 1, and the plot o8/i,ca againstS in Figure 2A shows

Ei 2. Panel A: Hanes plots o () and Slpea. (W) againsts. significant curvature. This occurs because as the rate of binding
gure 2. . lim peak . . L

Panel B: Best fit to eq 1 (dashed lines) of a set of catalytic voltammograms !ncreases, other chemical steps. pecome partly rate Im_"t'ng Efmd
(plain lines).T = 20°C, pH 7.8,» = 6 krpm,v = 10 mV/s. The data have influence the waveshape. Work is in progress to determine which
been corrected by subtracting the voltammogram recorded before nitratemechanism (more complex and general than that depicted in Scheme

was added in the cell. 1) is required to interpret the results over the entire range of
voltammograms in Figure 2B could be simultaneously fit to eq 1 substrate concentration.

with EJ,, = —185+ 5 mV (in fair agreement with the value Supporting Information Available: Table S1 and derivation of
determined in ref 1,-225+ 10 mV) andE?,,,V’Salt =-5+5mV. all equations (PDF). This material is available free of charge via the

In all cases but ongémulticentered Mo enzymes of the DMSO  Internet at http://pubs.acs.org.
reductase family for which PFV data are availd88l¢E. coli DMSO
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